A SOM-view of oilfield data: A novel vector field visualization for Self-Organizing Maps and its applications in the petroleum industry

نویسندگان

  • Georg Pölzlbauer
  • Andreas Rauber
  • Michael Dittenbach
چکیده

Self-Organizing Maps are a prominent tool for exploratory analysis and visualization of high-dimensional data. We propose a novel method for visualizing the cluster structure and coherent regions of the Self-Organizing Map that can be displayed as a vector field on top of the map lattice. Concepts of neighborhood and proximity on the map is exploited to obtain a representation where arrows point to the most similar region. The method is especially useful for large maps with a high number of map nodes. In our experiments, we visualize a data set that stems from applications in the petroleum industry, and show how to use our method to maximize the gas output.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Time Adaptive Self Organizing Map for Distribution Estimation

The feature map represented by the set of weight vectors of the basic SOM (Self-Organizing Map) provides a good approximation to the input space from which the sample vectors come. But the timedecreasing learning rate and neighborhood function of the basic SOM algorithm reduce its capability to adapt weights for a varied environment. In dealing with non-stationary input distributions and changi...

متن کامل

Gradient visualization of grouped component planes on the SOM lattice Gradient visualization of grouped component planes on the SOM lattice

The Self-Organizing Map has been successfully applied in numerous industrial applications. An important task in data analysis is finding and visualizing multiple dependencies in data. In this paper, we propose a method for visualizing the Self-Organizing Map by decomposing the feature dimensions into groups with high correlation or selections by domain experts. Using Gradient Visualization we p...

متن کامل

NGTSOM: A Novel Data Clustering Algorithm Based on Game Theoretic and Self- Organizing Map

Identifying clusters is an important aspect of data analysis. This paper proposes a noveldata clustering algorithm to increase the clustering accuracy. A novel game theoretic self-organizingmap (NGTSOM ) and neural gas (NG) are used in combination with Competitive Hebbian Learning(CHL) to improve the quality of the map and provide a better vector quantization (VQ) for clusteringdata. Different ...

متن کامل

Advanced visualization of Self-Organizing Maps with vector fields

Self-Organizing Maps have been applied in various industrial applications and have proven to be a valuable data mining tool. In order to fully benefit from their potential, advanced visualization techniques assist the user in analyzing and interpreting the maps. We propose two new methods for depicting the SOM based on vector fields, namely the Gradient Field and Borderline visualization techni...

متن کامل

Landforms identification using neural network-self organizing map and SRTM data

During an 11 days mission in February 2000 the Shuttle Radar Topography Mission (SRTM) collected data over 80% of the Earth's land surface, for all areas between 60 degrees N and 56 degrees S latitude. Since SRTM data became available, many studies utilized them for application in topography and morphometric landscape analysis. Exploiting SRTM data for recognition and extraction of topographic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005